Development of Tetrahydrofuran Chiral Synthons by Enzymatic Approach: Improved Synthesis of a Strong Agonist of Platelet Activating Factor

Susumu Kobayashi,* Michitaka Sato, Yoshihito Eguchi, and Masaji Ohno

Faculty of Pharmaceutical Sciences, University of Tokyo Hongo, Bunkyo-ku, Tokyo 113, Japan

Key Words: pig liver esterase; enantioselective hydrolysis; tetrahydrofuran; chiral synthon; platelet activating factor

Abstract: Bicyclic meso diester 7 waF found **to undergo** *enantioselective hydrolysis with PLE (pig liver esterase) generating the chiral monoester 8 in excellent yield with high enam'omeric excess.* The *chiral nwnoester 8 was successfulb utilized* in *the improved synthesis of IR-cis-THF derivative (I), a strong agonist of PAF which we previously developed.*

During the course of our continuing interests in the molecular design based on the structure of platelet activating factor (PAF),¹ we synthesized tetrahydrofuran derivatives $1-4$ in which the PAF structure is partially fixed as a part of the tetrahydrofuran skeleton.² (Scheme 1) Among the four stereoisomers prepared, 1R-cis-*THF derivative* (1) was found to have strong agonistic activity almost equivalent to that of natural C₁₈-PAF. Then it became necessary to develop a practical route to 1 for further investigation on biological tests.

Scheme 1

The synthetic approach taken in the previous study was devised to synthesize all stereoisomers in a stereochemically unambiguous manner, and L-tartaric acid was employed as a starting material. We report here the improved synthesis of **1** by enzymatic approach using pig liver esterase (PLE).

In relation to the enzymatic approach to nucleoside antibiotics, we previously demonstrated the PLBmediated hydrolysis of tricyclic meso diester 5 furnishing the corresponding chiral monoester 6 with $80\n-85\%$ enantiomeric excess.3 Therefore, we were particularly interested in the hydrolysis of the meso diester 7 with PLE, since ozonolysis of the carbon-carbon double bond of the 7-oxabicyclo[2.2.1]heptene skeleton would provide a new entry to chiral 2,5-syn-disubstituted tetrahydrofurans.

Scheme 2

Bicyclic meso diester 7 was prepared by the selective hydrogenation (5% Pd-C, H₂, 96%) of the Diels-Alder adduct⁴ of furan and dimethyl acetylenedicarboxylate. When the diester $7 (0.344g, 1.6$ mmole) was treated with PLE⁵ (100 μ , ca 180 units/mmole 7) in pH 8.0 phosphate buffer (27ml) and acetone (3ml) at room temperature for 18hr, the monoester 8 was obtained in 99% yield (0.317g).⁶ The crude monoester 8 was converted to the mixed diester 9 (isobutene, cat. H₂SO₄ / CH₂Cl₂, 82%), and the enantiomeric excess of 9 *(viz.* that of 8) was determined to be higher than 95% by ¹H-NMR experiments using Eu(hfc)3 as a chiral shift reagent. The absolute configuration of 8 was tentatively assigned as shown by analogy with those of other bicyclo[$2.2.1$]hept-2-ene derivatives,³ and was unambiguously confirmed by correlating to the known intermediate 16.2 Excellent enantiomeric excess is noteworthy because the enantiomeric excesses range between 80 and 85% in the case of other bicyclic derivatives. Enantiomerically pure monoester 8^7 could easily be obtained by recrystallization from ethyl acetate-hexane, and the following experiments were carried out using pure 8.

Selective hydrolysis (0.25M NaOH-acetone, 0° C, 0.5hr) of the mixed dicarboxylate 9 gave the *t*-butyl monoester 10⁸ in quantitative yield. Ozonolysis of the resulting monoester 10 proceeded smoothly in methanol at -78°C accompanying decarboxylation to form a-ketoester 11, which without isolation was directly treated with

sxliun~ borohydride to obtain hydroxy diesters **12** and **13 in 61%** and 35% yields, respectively.9 ((i) 03 / MeOH, -78°C, (ii) NaBH4 / MeOH, -78°C \rightarrow 0°C) (Scheme 3)

The stereochemistry of 12 and 13 was determined later by correlation to the known 16 and 17. respectively.2 Scheme 4 shows the transformation of the polar isomer 12 to 16, the key intermediate of 1. Thus, the protection of the hydroxyl group with tetrahydropyranyl ether (dihydropyran, cat. p-TsOH / CH₂Cl₂, r.t. 1.5hr, 93%). Reduction of the ester group followed by deprotection of the THP ether $((i)$ LiAlH₄ / Et₂O (ii) AcOH / THF-H₂O, 98%) gave the triol 15. Treatment of 12 with LiAlH₄ resulted in the formation of unidentified material as a by-product, and higher overall yields was obtained by stepwise procedure. Vicinal dial was selectively protected as a cyclohexylidene acetal to obtain 16 , 10 which was identical in all respects with the intermediate of **1.2 The** transformation of 16 to 1 was already established.2

In a similar manner, less polar isomer 13 was converted to 17 , 10 and the latter proved to be the enantiomer of the intermediate of 1S-cis-THF derivative (3) .²

Scheme 4

Although the reduction of α -ketoester 11 with NaBH₄ is not stereoselective, the present method is superior to the previous one starting from L-tartaric acid in terms of overall yields $(33\%$ from 7 to 16) and experimental operation. Furthermore, the present enzymatic approach provides a new route to chiral tetrahydrofuran derivatives which are considered potential intermediates for the synthesis of many biologically interesting compounds having tetrahydrofuran skeleton.

Acknowledgement

This work was financially supported in part by Grant-in-Aid for Developmental Scientific Research from The **Ministry** of Education, Science and Culture of Japan.

References and Notes

- **1.** *Piatelet Activating Factor and Related Lipid Mediators;* Snyder, F. Ed.; Plenum Press: New York & London; 1987.
- 2. Ohno, M.; Kobayashi, S.; Shiraiwa, M.; Yoshiwam, H.; Eguchi, Y. Molecular Design Toward Biologically Significant Compounds based on Platelet Activating Factor: Agonists and Antagonists. In New *Aspects of Organic Chemistry I;* Yoshida, Z.; Shiba, T.; Ohshiro, Y. Eds.; Kodansha Ltd.: Tokyo, **1989;** pp. 549-560.
- 3. (a) Ito, Y.; Shibata. T.; Arita, M.; Sawai, H.; Ohno, **M. J.** *Am. Chetn. Sec.* **1981,103, 67396741. (b) Arita,** M.; Adachi, K.; Ito, Y.; Sawai, H.; Ohno, M. *ibid. 1983,105, 4049-4055.*
- *4.* Diels, 0.; Alder, K. *Annulen,* **1931,490, 243-257.**
- **5.** Purchased from Sigma Co., Ltd.; E3128.
- 6. Enzymatic hydrolysis of 7 on a preparative scale: PIE (2ml) was added to the diester 7 (55.4g, 0.261 mole) in pH 8.0 phosphate buffer (3*l*) and acetone (300ml). The amount of PLE used was about 22 units/mmole 7. The whole mixture was gently stirred at ambient temperature (20~25°C) for 4 days. The solution was saturated with NaCl and acidified to pH 3.0 with 2N HCl. The mixture was extracted with AcOEt (0.5*l* x 3), and the combined AcOEt solution was washed (H₂O, sat. NaCl), dried (Na₂SO₄), and concentrated to give crude monoester $8(47.1g, 91\%)$ as a white solid. Recrystallization from AcOEthexane afforded enantiomerically pure monoester 8.
- 7. m.p. 88.0~88.5°C (AcOEt-hexane). *Anal.* Calcd for C9H₁₀O₅: C, 54.55; H, 5.09. Found: C, 54.43; H, 4.96. $[\alpha]_1^2$ -69.4° (c 0.95, CHCl₃). ¹H-NMR (CDCl₃) δ 1.18~1.45 (m, 2H), 1.88~2.14 (m, 2H), 3.90 (s, 3H), 5.24-5.42 (m. 2H).
- 8. Colorless powder. *Anal.* Calcd for C₁₃H₁₈O₅: C, 61.41; H, 7.13. Found: C, 61.32; H, 7.01. [a]²⁴₁ $+18.0^{\circ}$ (c 0.95, CHCl₃). ¹H-NMR (CDCl₃) δ 1.30~1.50 (m, 2H), 1.59 (s, 9H), 1.76~2.16 (m, 2H), 5.24-5.38 (m, lH), 5.40-5.52 (m, 1H).
- 9. 12: Rf0.44 (hexane:AcOEt=l:l). *Anal.* Calcd for C12H2@6: C, 55.37; H, 7.75. Found: C, 55.01; H, 7.78. $[\alpha]_1^2$ +4.86°(c 1.40, CHCl₃). ¹H-NMR (CDCl₃) δ 1.48 (s, 9H), 1.77~1.85 (m, 1H), 1.96~2.07 (m, lH), 2.15-2.36 (m, 2H), 3.76 (s, 3H), 4.25 (brd, lH), 4.45 (ddd, J=8.8, 6.5, 3.2Hz, lH), 4.51-4.56 (m, 2H). 13: Rf0.46 (hexane:AcOEt=l:l). m.p. 56.0-57.0% (EtzO-hexane). *Anal.* Calcd for C₁₂H₂₀O₆: C, 55.37; H, 7.75. Found: C, 55.56; H, 7.95. [a]²⁵₁-4.40^o(c 1.33, CHCl₃). ¹H-NMR (CDC13) 6 1.50 (s, 9H), 1.97-2.5 (m, 4H), 3.76 (s, 3H), 3.99 (dd, J=10.9, 1.5Hz, lH), 4.32 (d, J=11.2Hz, lH), 4.48-4.54 (m, 2H).
- 10. **16:** [a]²₃ +21.3°(c 1.05, CHCl₃). HRMS Calcd for C₁₃H₂₂O₄ 242.1519, Found 242.1522. ¹H-NMR $(CDC1_3)$ δ 1.39 (m, 2H), 1.52~1.67 (m, 8H), 1.86~2.02 (m, 4H), 2.43 (dd, J=7.7, 4.3Hz, 1H), 3.47 $(ddd, J=11.7, 8.0, 4.4Hz, 1H), 3.73 (dd, J=8.4, 6.2Hz, 1H), 3.79 (td, J=7.0, 5.5Hz, 1H), 4.07 (dd,$ $J=8.4$, 7.0Hz, 1H), 4.10 (m, 1H), 4.18 (dd, $J=11.7$, 6.2Hz, 1H). 17: $[\alpha]_1^{22} + 5.28^{\circ}$ (c 1.02, CHCl₃). IH-NMR (CDC13) 6 1.35 (m, 2H), 1.80-2.01 (m, 4H), 1.50-1.71 (m, 8H), 2.51 (dd, J=7.7, 4SHz, lH), 3.49 (ddd, J=ll.7, 8.1, 7.7Hz, lH), 4.01 (dd, J=8.1, 6.6Hz, lH), 4.11 (ddd, J=7.7, 6.6, 4.8Hz, 1H), 4.13 (m, 1H). ent-17² prepared from L-tartaric acid; $[\alpha]_1^{24}$ -4.60°(c 1.13, CHCl₃).

(Received in Japan 5 November 1991)